Abstract

It was shown by Faltings and Hriljac that the N\'eron-Tate height of a point on the Jacobian of a curve can be expressed as the self-intersection of a corresponding divisor on a regular model of the curve. We make this explicit and use it to give an algorithm for computing N\'eron-Tate heights on Jacobians of hyperelliptic curves. To demonstrate the practicality of our algorithm, we illustrate it by computing N\'eron-Tate heights on Jacobians of hyperelliptic curves of genus from 1 to 9.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.