Abstract
This paper discusses algorithms for solving Markov decision processes (MDPs) that have monotone optimal policies. We propose a two-stage alternating convex optimization scheme that can accelerate the search for an optimal policy by exploiting the monotone property The first stage is a linear program formulated in terms of the joint state-action probabilities. The second stage is a regularized problem formulated in terms of the conditional probabilities of actions given states. The regularization uses techniques from nearly-isotonic regression. While a variety of iterative method can be used in the first formulation of the problem, we show in numerical simulations that, in particular, the alternating method of multipliers (ADMM) can be significantly accelerated using the regularization step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.