Abstract

In this paper, we use integer programming (IP) to compute minimal forecast horizons for the classical dynamic lot-sizing problem (DLS). As a solution approach for computing forecast horizons, integer programming has been largely ignored by the research community. It is our belief that the modelling and structural advantages of the IP approach coupled with the recent significant developments in computational integer programming make for a strong case for its use in practice. We formulate some well-known sufficient conditions, and necessary and sufficient conditions (characterizations) for forecast horizons as feasibility/optimality questions in 0–1 mixed integer programs. An extensive computational study establishes the effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.