Abstract

A new approach is presented for computing the interior medial axes of generic regions in R3 bounded by C(4)-smooth parametric B-spline surfaces. The generic structure of the 3D medial axis is a set of smooth surfaces along with a singular set consisting of edge curves, branch curves, fin points and six junction points. In this work, the medial axis singular set is first computed directly from the B-spline representation using a collection of robust higher order techniques. Medial axis surfaces are computed as a time trace of the evolving self-intersection set of the boundary under the the eikonal (grassfire) flow, where the bounding surfaces are dynamically offset along the inward normal direction. The eikonal flow results in special transition points that create, modify or annihilate evolving curve fronts of the (self-) intersection set. The transition points are explicitly identified using the B-spline representation. Evolution of the (self-) intersection set is computed by adapting a method for tracking intersection curves of two different surfaces deforming over generalized offset vector fields. The proposed algorithm accurately computes connected surfaces of the medial axis as well its singular set. This presents a complete solution along with accurate topological structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.