Abstract
An algorithm proposed recently by Melman reduces the costs of computing the product Ax with a symmetric centrosymmetric matrix A as compared to the case of an arbitrary A. We show that the same result can be achieved by a simpler algorithm, which requires only that A be centrosymmetric. However, if A is hermitian or symmetric, this can be exploited to some extent. Also, we show that similar gains are possible when A is a skew-centrosymmetric or a centrohermitian matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Linear Algebra and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.