Abstract

The authors present a new polynomial-time algorithm for computing lower bounds on the number of functional units (FUs) of each type required to schedule a data flow graph in a specified number of control steps. A formal approach is presented that is guaranteed to find the tightest possible bounds that can be found by relaxing either the precedence constraints or integrality constraints on the scheduling problem. This tight, yet fairly efficient, bounding method can be used to estimate FU area, to generate resource constraints for reducing the search space, or in conjunction with exact techniques for efficient optimal design space exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.