Abstract
We propose a new algorithm for the computation of a singular value decomposition (SVD) low-rank approximation of a matrix in the matrix product operator (MPO) format, also called the tensor train matrix format. Our tensor network randomized SVD (TNrSVD) algorithm is an MPO implementation of the randomized SVD algorithm that is able to compute dominant singular values and their corresponding singular vectors. In contrast to the state-of-the-art tensor-based alternating least squares SVD (ALS-SVD) and modified alternating least squares SVD (MALS-SVD) matrix approximation methods, TNrSVD can be up to 13 times faster while achieving better accuracy. In addition, our TNrSVD algorithm also produces accurate approximations in particular cases where both ALS-SVD and MALS-SVD fail to converge. We also propose a new algorithm for the fast conversion of a sparse matrix into its corresponding MPO form, which is up to 509 times faster than the standard tensor train SVD method while achieving machine precision accuracy. The efficiency and accuracy of both algorithms are demonstrated in numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.