Abstract

Based on the transport theory, we present a modeling approach to light scattering in turbid material. It uses an efficient and general statistical description of the material's scattering and absorption behavior. The model estimates the spatial distribution of intensity and the flow direction of radiation, both of which are required, e.g., for adaptable predictions of the appearance of colors in halftone prints. This is achieved by employing a computational particle method, which solves a model equation for the probability density function of photon positions and propagation directions. In this framework, each computational particle represents a finite probability of finding a photon in a corresponding state, including properties like wavelength. Model evaluations and verifications conclude the discussion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call