Abstract

Abstract Let G be a simple connected graph of order n and size m. The matrix L(G)= D(G)− A(G) is called the Laplacian matrix of the graph G,where D(G) and A(G) are the degree diagonal matrix and the adjacency matrix, respectively. Let the vertex degree sequence be d1 ≥ d2 ≥··· ≥ dn and let μ1 ≥ μ2 ≥··· ≥ μn−1 >μn = 0 be the eigenvalues of the Laplacian matrix of G. The graph invariants, Laplacian energy (LE), the Laplacian-energy-like invariant (LEL) and the Kirchhoff index (Kf), are defined in terms of the Laplacian eigenvalues of graph G, as L E = ∑ i = 1 n | μ i - 2 m n | LE = \sum\nolimits_{i = 1}^n {\left| {{\mu _i} - {{2m} \over n}} \right|} , L E L = ∑ i = 1 n - 1 μ i LEL = \sum\nolimits_{i = 1}^{n - 1} {\sqrt {{\mu _i}} } and K f = n ∑ i = 1 n - 1 1 μ i Kf = n\sum\nolimits_{i = 1}^{n - 1} {{1 \over {{\mu _i}}}} respectively. In this paper, we obtain a new bound for the Laplacian-energy-like invariant LEL and establish the relations between Laplacian-energy-like invariant LEL and the Kirchhoff index Kf.Further,weobtain the relations between the Laplacian energy LE and Kirchhoff index Kf.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.