Abstract

Along with the development of IoT and mobile edge computing in recent years, everything can be connected into the network at anytime, resulting in quite dynamic networks with time-varying connections. Controllability has long been recognized as one of the fundamental properties of such temporal networks, which can provide valuable insights for the construction of new infrastructures, and thus is in urgent need to be explored. In this chapter, we take smart transportation as an example, first disclose the controllability problem in IoV (Internet of Vehicles) and then design a DND (driver node) algorithm based on Kalman’s rank condition to analyze the controllability of dynamic temporal network and also to calculate the minimum number of driver nodes. At last, we conduct a series of experiments to analyze the controllability of IoV network, and the results show the effects from vehicle density, speed, and connection radius on network controllability. These insights are critical for varieties of applications in the future smart connected living.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call