Abstract
Steady two-dimensional viscous motion within a circular cylinder generated by (a) the rotation of part of the cylinder wall and (b) fluid entering and leaving through slots in the wall is considered. Studied in particular are moving-surface problems with continuous and discontinuous surface speeds, simple inflow–outflow problems and the impinging-jet problem within a circle. The analytical solutions at zero Reynolds number are given for the last two types of problem. Numerical results are obtained at various Reynolds numbers from the integral representation of the solution. At zero Reynolds number this approach involves a quadrature around the circumference of the cylinder. At other Reynolds numbers it involves an iterative–integral technique based on the use of the ‘clamped-plate’ biharmonic Green's function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.