Abstract

The computation of eigenvalues is one of the core topics of numerical mathematics. We will discuss an eigenvalue algorithm for the computation of inner eigenvalues of a large, symmetric, and positive definite matrix M based on the preconditioned inverse iteration $$\begin{array}{rcl} x_{i+1} = x_{i} - {B}^{-1}\left (Mx_{ i} - \mu (x_{i})x_{i}\right ),& & \\ \end{array}$$ and the folded spectrum method (replace M by \({(M - \sigma I)}^{2}\)). We assume that M is given in the tensor train matrix format and use the TT-toolbox from I.V. Oseledets (see http://spring.inm.ras.ru/osel/) for the numerical computations. We will present first numerical results and discuss the numerical difficulties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.