Abstract

AbstractThe transient start‐up flow solution with slip is a useful tool to verify computational fluid dynamics (CFD) simulations. However, a highly accurate, open‐source black box solution does not seem to be available. Our method provides a fast, automated, and rigorously verified open‐source implementation that can compute the hydrodynamic eigenmodes of a two‐dimensional channel flow beyond the standard floating‐point precision. This allows for a very accurate computation of the corresponding Fourier series solution. We prove that all roots are found in all special cases for the general flow problem with different slip lengths on the channel walls. The numerical results confirm analytically derived asymptotic power laws for the leading hydrodynamic eigenmode and the characteristic timescale in the limiting cases of small and large slip. The code repository including test cases is publicly available (DOI: 10.5281/zenodo.6806351). The Navier slip boundary condition for numerical simulations in OpenFOAM is also publicly available (DOI: 10.5281/zenodo.7037712).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.