Abstract
We consider the problem of explicitly computing Beilinson–Bloch heights of homologically trivial cycles on varieties defined over number fields. Recent results have established a congruence, up to the rational span of logarithms of primes, between the height of certain limit mixed Hodge structures and certain Beilinson–Bloch heights obtained from odd-dimensional hypersurfaces with a node. This congruence suggests a new method to compute Beilinson–Bloch heights. Here we explain how to compute the relevant limit mixed Hodge structures in practice, then apply our computational method to a nodal quartic curve and a nodal cubic threefold. In both cases we explain the nature of the primes occurring in the congruence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.