Abstract

The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite interval I of a textbf{Z}^2-indexed persistence module M is equal to the generalized rank of the zigzag module that is induced on a certain path in I tracing mostly its boundary. Hence, we can compute the generalized rank of M over I by computing the barcode of the zigzag module obtained by restricting to that path. If M is the homology of a bifiltration F of t simplices (while accounting for multi-criticality) and I consists of t points, this computation takes O(t^omega ) time where omega in [2,2.373) is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a module M, determine whether M is interval decomposable and, if so, compute all intervals supporting its indecomposable summands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.