Abstract
Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.
Highlights
Recent advances in neuromorphic engineering (Schuman et al, 2017) have motivated the development of neural hardware substrates that are tailored to loosely emulate computations that happen in a human brain with extremely low power and efficiency
In spite of the radically differing hardware implementations of these neural network substrates, many of them share an inherent design principle: converting input signal amplitude information into a rate-coded spike train and performing parallel operations of dot-product computations on these spike trains, based on synaptic weights stored in the memory array
This section describes how a system of linear equations can be solved using a recurrent Hopfield neural network, and shows how such a solver can be used in applications such as target tracking and optical flow
Summary
Recent advances in neuromorphic engineering (Schuman et al, 2017) have motivated the development of neural hardware substrates that are tailored to loosely emulate computations that happen in a human brain with extremely low power and efficiency. In spite of the radically differing hardware implementations of these neural network substrates, many of them share an inherent design principle: converting input signal amplitude information into a rate-coded spike train and performing parallel operations of dot-product computations on these spike trains, based on synaptic weights stored in the memory array. These similarities result in a set of common challenges during practical implementation, especially when using them as computing substrates for applications with a mathematical algorithmic basis. IBM’s TrueNorth supports 9bit weight values, where most significant indicates sign of the weights
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.