Abstract

We study the sets that are computable from both halves of some (Martin–Löf) random sequence, which we call [Formula: see text]-bases. We show that the collection of such sets forms an ideal in the Turing degrees that is generated by its c.e. elements. It is a proper subideal of the [Formula: see text]-trivial sets. We characterize [Formula: see text]-bases as the sets computable from both halves of Chaitin’s [Formula: see text], and as the sets that obey the cost function [Formula: see text]. Generalizing these results yields a dense hierarchy of subideals in the [Formula: see text]-trivial degrees: For [Formula: see text], let [Formula: see text] be the collection of sets that are below any [Formula: see text] out of [Formula: see text] columns of some random sequence. As before, this is an ideal generated by its c.e. elements and the random sequence in the definition can always be taken to be [Formula: see text]. Furthermore, the corresponding cost function characterization reveals that [Formula: see text] is independent of the particular representation of the rational [Formula: see text], and that [Formula: see text] is properly contained in [Formula: see text] for rational numbers [Formula: see text]. These results are proved using a generalization of the Loomis–Whitney inequality, which bounds the measure of an open set in terms of the measures of its projections. The generality allows us to analyze arbitrary families of orthogonal projections. As it turns out, these do not give us new subideals of the [Formula: see text]-trivial sets; we can calculate from the family which [Formula: see text] it characterizes. We finish by studying the union of [Formula: see text] for [Formula: see text]; we prove that this ideal consists of the sets that are robustly computable from some random sequence. This class was previously studied by Hirschfeldt [D. R. Hirschfeldt, C. G. Jockusch, R. Kuyper and P. E. Schupp, Coarse reducibility and algorithmic randomness, J. Symbolic Logic 81(3) (2016) 1028–1046], who showed that it is a proper subclass of the [Formula: see text]-trivial sets. We prove that all such sets are robustly computable from [Formula: see text], and that they form a proper subideal of the sets computable from every (weakly) LR-hard random sequence. We also show that the ideal cannot be characterized by a cost function, giving the first such example of a [Formula: see text] subideal of the [Formula: see text]-trivial sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.