Abstract

Herein is discussed the performance of spaceborne nulling interferometers searching for extra-solar planets, in terms of their extinction maps projected on-sky. In particular, it is shown that the designs of Spatial Filtering (SF) and Achromatic Phase Shifter (APS) subsystems, both required to achieve planet detection and characterization, can sensibly affect the nulling maps produced by a simple Bracewell interferometer. Analytical relationships involving cross correlation products are provided and numerical simulations are performed, demonstrating marked differences in the aspect of extinction maps and the values of attained fringes contrasts. It is concluded that depending on their basic principles and designs, FS and APS will result in variable capacities for serendipitous discoveries of planets orbiting around their parent star. The mathematical relationships presented in this paper are assumed to be general, i.e. they should apply to other types of multi-apertures nulling interferometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.