Abstract
We consider Cournot oligopoly models in which some variables represent indivisible quantities. These models can be addressed by computing equilibria of Nash equilibrium problems in which the players solve mixed-integer nonlinear problems. In the literature there are no methods to compute equilibria of this type of Nash games. We propose a Jacobi-type method for computing solutions of Nash equilibrium problems with mixed-integer variables. This algorithm is a generalization of a recently proposed method for the solution of discrete so-called “2-groups partitionable” Nash equilibrium problems. We prove that our algorithm converges in a finite number of iterations to approximate equilibria under reasonable conditions. Moreover, we give conditions for the existence of approximate equilibria. Finally, we give numerical results to show the effectiveness of the proposed method.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.