Abstract

Min-max differential inequalities (DIs) can be used to characterize robust forward invariant tubes with convex cross-section for a large class of nonlinear control systems. The advantage of using set-propagation over other existing approaches for tube MPC is that they avoid the discretization of control policies. Instead, the conservatism of min-max DIs in tube MPC arises from the discretization of sets in the state-space, while the control law is never discretized and remains defined implicitly via the solution of a min-max optimization problem. The contribution of this paper is the development of a practical implementation of min-max DIs for tube MPC using ellipsoidal-tube enclosures. We illustrate these developments with a spring-mass-damper system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.