Abstract
In this paper, we use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state. In our numerical treatment, we keep terms up to third order in the angular velocity. We present indicative numerical results for models satisfying a particular differential rotation law. We emphasize on computing the change in mass owing to this differential rotation law.
Highlights
In [1] we have implemented the well-known Hartle’s perturbation method ([2,3,4]), by keeping terms up to third order in the angular velocity, to the computation of differentially rotating neutron stars simulated by generalrelativistic polytropic models (angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy are quantities drastically corrected by the third-order approach)
We emphasize on computing the change in mass owing to this differential rotation law
In [1] we have implemented the well-known Hartle’s perturbation method ([2,3,4]), by keeping terms up to third order in the angular velocity, to the computation of differentially rotating neutron stars simulated by generalrelativistic polytropic models
Summary
In [1] we have implemented the well-known Hartle’s perturbation method ([2,3,4]), by keeping terms up to third order in the angular velocity, to the computation of differentially rotating neutron stars simulated by generalrelativistic polytropic models (angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy are quantities drastically corrected by the third-order approach). We use the well-known Hartle’s perturbation method in order to compute models of differentially rotating neutron stars obeying realistic equations of state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Astronomy and Astrophysics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.