Abstract
Given a set B of d-dimensional boxes (i.e., axis-aligned hyperrectangles), a minimum coverage kernel is a subset of B of minimum size covering the same region as B. Computing it is NP-hard, but as for many similar NP-hard problems (e.g., Box Cover, and Orthogonal Polygon Covering), the problem becomes solvable in polynomial time under restrictions on B. We show that computing minimum coverage kernels remains NP-hard even when restricting the graph induced by the input to a highly constrained class of graphs. Alternatively, we present two polynomial-time approximation algorithms for this problem: one deterministic with an approximation ratio within O(logn), and one randomized with an improved approximation ratio within O(lgOPT) (with high probability).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.