Abstract

We consider the bifurcation diagram in a suitable parameter plane of a quadratic vector field in $\mathbb{R}^3$ that features a homoclinic flip bifurcation of the most complicated type. This codimension-two bifurcation is characterized by a change of orientability of associated two-dimensional manifolds and generates infinite families of secondary bifurcations. We show that curves of secondary $n$-homoclinic bifurcations accumulate on a curve of a heteroclinic bifurcation involving infinity. We present an adaptation of the technique known as Lin's method that enables us to compute such connecting orbits to infinity. We first perform a weighted directional compactification of $\mathbb{R}^3$ with a subsequent blow-up of a non-hyperbolic saddle at infinity. We then set up boundary-value problems for two orbit segments from and to a common two-dimensional section: the first is to a finite saddle in the regular coordinates, and the second is from the vicinity of the saddle at infinity in the blown-up chart. The so-called Lin gap along a fixed one-dimensional direction in the section is then brought to zero by continuation. Once a connecting orbit has been found in this way, its locus can be traced out as a curve in a parameter plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call