Abstract

<p style='text-indent:20px;'>A complete Lyapunov function characterizes the behaviour of a general discrete-time dynamical system. In particular, it divides the state space into the chain-recurrent set where the complete Lyapunov function is constant along trajectories and the part where the flow is gradient-like and the complete Lyapunov function is strictly decreasing along solutions. Moreover, the level sets of a complete Lyapunov function provide information about attractors, repellers, and basins of attraction. <p style='text-indent:20px;'>We propose two novel classes of methods to compute complete Lyapunov functions for a general discrete-time dynamical system given by an iteration. The first class of methods computes a complete Lyapunov function by approximating the solution of an ill-posed equation for its discrete orbital derivative using meshfree collocation. The second class of methods computes a complete Lyapunov function as solution of a minimization problem in a reproducing kernel Hilbert space. We apply both classes of methods to several examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call