Abstract

The chemical potential of a component in a solution is defined as the free energy change as the amount of that component changes. Computing this fundamental thermodynamic property from atomistic simulations is notoriously difficult because of the convergence issues involved in free energy methods and finite size effects. This Communication presents the so-called S0 method, which can be used to obtain chemical potentials from static structure factors computed from equilibrium molecular dynamics simulations under the isothermal-isobaric ensemble. This new method is demonstrated on the systems of binary Lennard-Jones particles, urea-water mixtures, a NaCl aqueous solution, and a high-pressure carbon-hydrogen mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.