Abstract
Gaussian convolution is one of the most important algorithms in image processing. The present work focuses on the computation of the Gaussian scale-space, a family of increasingly blurred images, responsible, among other things, for the scale-invariance of SIFT, a popular image matching algorithm. We discuss and numerically analyze the precision of three different alternatives for defining a discrete counterpart to the continuous Gaussian smoothing operator. This study is focused on low blur levels, that are crucial for the scale-space accuracy. Source Code An ANSI C source code implementation of the described algorithms is accessible at the IPOL web page of this article 1 , together with an on-line demo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.