Abstract

In this article, we explain how to calculate adjusted risk ratios and risk differences when reporting results from logit, probit, and related nonlinear models. Building on Stata's margins command, we create a new postestimation command, adjrr, that calculates adjusted risk ratios and adjusted risk differences after running a logit or probit model with a binary, a multinomial, or an ordered outcome. adjrr reports the point estimates, delta-method standard errors, and 95% confidence intervals and can compute these for specific values of the variable of interest. It automatically adjusts for complex survey design as in the fit model. Data from the Medical Expenditure Panel Survey and the National Health and Nutrition Examination Survey are used to illustrate multiple applications of the command.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.