Abstract

AbstractWe address the problem of computing a Walrasian equilibrium price in an ascending auction with gross substitutes valuations. In particular, an auction market is considered where there are multiple differentiated items and each item may have multiple units. Although the ascending auction is known to find an equilibrium price vector in finite time, little is known about its time complexity. The main aim of this paper is to analyze the time complexity of the ascending auction globally and locally, by utilizing the theory of discrete convex analysis. An exact bound on the number of iterations is given in terms of the ℓ ∞ distance between the initial price vector and an equilibrium, and an efficient algorithm to update a price vector is designedbased on a min-max theorem for submodular function minimization.KeywordsLyapunov FunctionPrice VectorValuation FunctionCombinatorial AuctionSubmodular FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call