Abstract

A mathematical model equation for binary adsorption-reaction process is developed and illustrated for the catalytic dehydrogenation of cyclohexane to benzene on Platinum-Rhenium/Alumina catalyst with unadsorbed hydrogen in inert (argon, he lium) and active (hydrogen) carrier gases using pulse and continuous flow techniques. The optimization routine of Nelder-Mead simplex algorithm is developed with a view to estimating surface reaction rate and adsorption equilibrium constants at different temperatures, which in turn are used to determine activation energies and adsorption equilibrium energies for cyclohexane dehydrogenation in inert and active carrier gases using pulse and continuous flow techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.