Abstract

Informational entropy and syentropy percent were used to optimize the flows in the first (1D) and in the second (2D) dimension (1Fm and 2Fm, respectively) as well as the temperature program rate (r) for the flow modulated GC×GC-FID separation of C6–C12 aromatic hydrocarbons in a low boiling petrochemical sample. The separations were performed on a column series consisting of a 25m×0.25mm i.d.×0.2μm df of the polar ionic liquid SLB-IL 100 (1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide) in the first dimension and 5m×0.25mm i.d.×0.25μm df apolar HP-5MS (5% phenyl-95% methylpolysiloxane) in the second dimension. A dependence of a distribution of individual aromatic hydrocarbons in the 2D retention plane on the carrier gas flows (1Fm, and 2Fm,) and temperature gradient (r) was examined in this study. It was found that informational entropy and synentropy percent are advantageous criteria to characterize the distribution of peaks in the 2D retention plane. Maximum informational entropy and synentropy percents correspond to the maximum distribution of C6–C12 aromatic hydrocarbons in the corresponding 2D retention plane gained by the given separation using optimized values of individual carrier gas column volume flows and the temperature rate at the temperature programmed GC×GC separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.