Abstract

Stroke scales usually convert motor status to a score along an ordinal scale and do not provide a permanent recording of motor performance. Computerized methods sensitive to small changes in neurological status may be of value for studying and measuring stroke recovery. We developed a computerized dynamometer and tested 23 stroke subjects and 12 elderly control subjects on three motor tasks: sustained squeezing, repetitive squeezing, and index finger tapping. For each subject, scores on the Fugl-Meyer and National Institutes of Health stroke scales were also obtained. Sustained squeezing by the paretic hand of stroke subjects was weaker (9.2 kg) than the unaffected hand (20.2 kg; P < .0005), as well as control dominant (23.1 kg; P < .0005) and nondominant (19.9 kg; P < .005) hands. Paretic index finger tapping was slower (2.5 Hz) than the unaffected hand (4.2 Hz; P < .01), as well as control dominant (4.7 Hz; P < .0005) and nondominant (4.9 Hz; P < .0005) hands. Many features of dynamometer data correlated significantly with stroke subjects' Fugl-Meyer scores, including sustained squeeze maximum force (rho = .91) and integral of force over 5 seconds (rho = .91); repetitive squeeze mean force (rho = .92) and mean frequency (rho = .73); and index finger tap mean frequency (rho = .83). Correlation of these motor parameters with National Institutes of Health stroke scale score was weaker in all cases, a consequence of the scoring of nonmotor deficits on this scale. Dynamometer measurements showed excellent interrater (r = .99) and intrarater (r = .97) reliability. The degree of motor deficit quantitated with the dynamometer is strongly associated with the extent of neurological abnormality measured with the use of two standardized stroke scales. The computerized dynamometer rapidly measures motor function along a continuous, linear scale and produces a permanent recording of hand motor performance accessible for subsequent analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.