Abstract

Fast-growing abdominal aortic aneurysms (AAA) have a high rupture risk and poor outcomes if not promptly identified and treated. Our primary objective is to improve the differentiation of small AAAs' growth status (fast versus slow-growing) through a combination of patient health information, computational hemodynamics, geometric analysis, and artificial intelligence. 3D computed tomography angiography (CTA) data available for 70 patients diagnosed with AAAs with known growth status were used to conduct geometric and hemodynamic analyses. Differences among ten metrics (out of ninety metrics) were statistically significant discriminators between fast and slow-growing groups. Using a support vector machine (SVM) classifier, the area under receiving operating curve (AUROC) and total accuracy of our best predictive model for differentiation of AAAs' growth status were 0.86 and 77.50%, respectively. In summary, the proposed analytics has the potential to differentiate fast from slow-growing AAAs, helping guide resource allocation for the management of patients with AAAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.