Abstract

The worm and worm-gear tooth surfaces of existing worm-gear drive designs are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause shifting of the bearing contact and transmission errors. Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design are proposed. Also, modification of worm-gear drive geometry that provides a localized and stable bearing contact with reduced sensitivity to misalignment is described. Methods for computerized simulation of meshing and contact of worm-gear drives with the existing and modified geometry are represented. Numerical examples that illustrate the developed theory are provided. The proposed approach has been applied for modification of involute, Klingelnberg and Flender type worm-gear drives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.