Abstract

If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald, 1947) is applied to determine when and which classification decision is to be taken. In practice, the procedure is always truncated at a maximum test length (TSPRT). Stochastically Curtailed SPRT (SCSPRT) (Finkelman, 2008) uses additional stopping rules. If the Rasch model (1960) is used as the item response theory (IRT) model, applying the TSPRT and SCSPRT is elegant and simple. The performance of the TSPRT- and SCSPRT-based CATs are compared using different item selection methods. It is shown that the TSPRT and SCSPRT procedures are much better than optimal traditional linear tests. Results with the Rasch model are compared to results with other IRT models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.