Abstract
A new rubber band straightening transform (RBST) is introduced for characterization of mammographic masses as malignant or benign. The RBST transforms a band of pixels surrounding a segmented mass onto the Cartesian plane (the RBST image). The border of a mammographic mass appears approximately as a horizontal line, and possible speculations resemble vertical lines in the RBST image. In this study, the effectiveness of a set of directional textures extracted from the images before the RBST. A database of 168 mammograms containing biopsy-proven malignant and benign breast masses was digitized at a pixel size of 100 microns x 100 microns. Regions of interest (ROIs) containing the biopsied mass were extracted from each mammogram by an experienced radiologist. A clustering algorithm was employed for automated segmentation of each ROI into a mass object and background tissue. Texture features extracted from spatial gray-level dependence matrices and run-length statistics matrices were evaluated for three different regions and representations: (i) the entire ROI; (ii) a band of pixels surrounding the segmented mass object in the ROI; and (iii) the RBST image. Linear discriminant analysis was used for classification, and receiver operating characteristic (ROC) analysis was used to evaluate the classification accuracy. Using the ROC curves as the performance measure, features extracted from the RBST images were found to be significantly more effective than those extracted from the original images. Features extracted from the RBST images yielded an area (Az) of 0.94 under the ROC curve for classification of mammographic masses as malignant and benign.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.