Abstract

Holograms that is allowing 360-degree viewing such as cylindrical holograms, show us 3D images with motion parallax and look-around property. Especially, full parallax holograms - not multiplex holograms - make reproductions with an impressive 3-D feeling. However, it has not been realized by a computer-generated hologram, because it takes huge amount of time to calculate a fringe pattern by a PC. To improve the calculation time, we have studied two types of computer-generated holograms allowing 360-degree viewing: cylindrical holograms and prismatic holograms. A prismatic hologram consists of some plates, and it takes not so much time to synthesize the hologram on each plate, because there are some fast calculation methods on planar shape hologram. For the example of the prismatic holograms, we made decagonal prismatic holograms that consist of 10 plates. On the other hand, a fast calculation method of cylindrical-holograms has been proposed, theoretically. We have implemented the method and verified the efficiency of the method. Both calculated fringe patterns were printed on transparent sheets and were carried out experiments of reconstruction. As the results, the holograms show us 3D images of objects at the center of the hologram. A viewer can see the 3D objects from 360-degree by both eyes. In this paper, we discuss the methods and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call