Abstract

A computer-based method is employed for the reformulation of rate equations for enzyme-catalyzed reactions from the coefficient form to the kinetic form. This method is applied to equations for the initial rate of enzyme-catalyzed isotope exchange. In the reformulated equations, the coefficients of each rate equation term are expressed as maximum velocity of the initial rate of the net reaction, Michaelis constants, inhibition constants, and exchange constants. The definition of the exchange constant for a given reactant may be identical to one of the inhibition constants for that reactant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.