Abstract

In this paper, we proposed a computer-aided diagnosis and analysis for a challenging and important clinical case in lung cancer, i.e., differentiation of two subtypes of Non-small cell lung cancer NSCLC. The proposed framework utilized both local and topological features from histopathology images. To extract local features, a robust cell detection and segmentation method is first adopted to segment each individual cell in images. Then a set of extensive local features is extracted using efficient geometry and texture descriptors based on cell detection results. To investigate the effectiveness of topological features, we calculated architectural properties from labeled nuclei centroids. Experimental results from four popular classifiers suggest that the cellular structure is very important and the topological descriptors are representative markers to distinguish between two subtypes of NSCLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.