Abstract

A parallel algorithm is implemented to simulate sample paths of stationary normal processes possessing a Butterworth-type covariance, in order to investigate asymptotic properties of the first passage time probability densities for time-varying boundaries. After a self-contained outline of the simulation procedure, computational results are included to show that for large times and for large boundaries the first passage time probability density through an asymptotically periodic boundary is exponentially distributed to an excellent degree of approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.