Abstract

In this paper, a segmentation method for detection of masses in digitized mammograms has been developed using two parallel approaches: adaptive thresholding method and fuzzy entropy feature as a CAD scheme. The algorithm consists of the following steps: a) Preprocessing of the digitized mammograms including identification of region of interest (ROI) as candidate for massive lesion through breast region extraction, b) Image enhancement using linear transformation and subtracting enhanced from the original image, c) Characterization of the ROI by extracting the fuzzy entropy feature, d) Local adaptive thresholding for segmentation of mass areas, e) Combine expert of the last two parallel approaches for mass detection. The proposed method was tested on 78 mammograms (30 normal & 48 cancerous) from the BIRADS and local databases. The detected regions validated by comparing them with the radiologists' hand-sketched boundaries of real masses. The current algorithm can achieve a sensitivity of 90.73% and specificity of 89.17%. This approach showed that the behavior of local adaptive thresholding and fuzzy entropy technique could be a useful method for mass detection on digitized mammograms. Our results suggest that the proposed method could help radiologists as a second reader in mammographic screening of masses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call