Abstract

Breast cancer is the most common type of malignancy diagnosed in women. Through early detection and diagnosis, there is a great chance of recovery and thereby reduce the mortality rate. Many preliminary tests like non-invasive radiological diagnosis using ultrasound, mammography, and MRI are widely used for the diagnosis of breast cancer. However, histopathological analysis of breast biopsy specimen is inevitable and is considered to be the golden standard for the affirmation of cancer. With the advancements in the digital computing capabilities, memory capacity, and imaging modalities, the development of computer-aided powerful analytical techniques for histopathological data has increased dramatically. These automated techniques help to alleviate the laborious work of the pathologist and to improve the reproducibility and reliability of the interpretation. This paper reviews and summarizes digital image computational algorithms applied on histopathological breast cancer images for nuclear atypia scoring and explores the future possibilities. The algorithms for nuclear pleomorphism scoring of breast cancer can be widely grouped into two categories: handcrafted feature-based and learned feature-based. Handcrafted feature-based algorithms mainly include the computational steps like pre-processing the images, segmenting the nuclei, extracting unique features, feature selection, and machine learning-based classification. However, most of the recent algorithms are based on learned features, that extract high-level abstractions directly from the histopathological images utilizing deep learning techniques. In this paper, we discuss the various algorithms applied for the nuclear pleomorphism scoring of breast cancer, discourse the challenges to be dealt with, and outline the importance of benchmark datasets. A comparative analysis of some prominent works on breast cancer nuclear atypia scoring is done using a benchmark dataset which enables to quantitatively measure and compare the different features and algorithms used for breast cancer grading. Results show that improvements are still required, to have an automated cancer grading system suitable for clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.