Abstract

Quantum chemistry enables to study systems with chemical accuracy (<1 kcal/mol from experiment) but is restricted to a handful of atoms due to its computational expense. This has led to ongoing interest to optimize and simplify these methods while retaining accuracy. Implementing quantum mechanical (QM) methods on modern hardware such as multiple-GPUs is one example of how the field is optimizing performance. Multiscale approaches like the so-called QM/molecular mechanical method are gaining popularity in drug discovery because they focus the application of QM methods on the region of choice (e.g., the binding site), while using efficient MM models to represent less relevant areas. The creation of simplified QM methods is another example, including the use of machine learning to create ultra-fast and accurate QM models. Herein, we summarize recent advancements in the development of optimized QM methods that enhance our ability to use these methods in computer aided drug discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.