Abstract

Feature representation is the crucial factor for the magnetic resonance imaging (MRI) based computer-aided diagnosis (CAD) of Parkinson's disease (PD). Deep polynomial network (DPN) is a novel supervised deep learning algorithm, which has excellent feature representation for small dataset. In this work, a stacked DPN (SDPN) based ensemble learning framework is proposed for diagnosis of PD, which can improve diagnostic accuracy for small dataset. In the proposed framework, SDPN was performed on each subset of extracted features from MRI images to generate new feature representation. The support vector machine (SVM) was then adopted to perform classification task on each subset. The ensemble learning algorithm was then performed on all the SVM classifiers to generate the final diagnosis for PD. The experimental results on the Parkinson's Progression Markers Initiative dataset (PPMI) showed that the proposed algorithm achieved the classification accuracy, sensitivity and specificity of 90.15%, 85.48% and 93.27%, respectively, with the brain network features, and it also got the classification accuracy of 87.18%, sensitivity of 86.90% and specificity of 87.27% on the multi-view features extracted from different brain regions. Moreover, the proposed algorithm outperformed other algorithms on the MRI dataset from PPMI. It suggests that the proposed SDPN-based ensemble learning framework has the feasibility and effectiveness for the CAD of PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.