Abstract

According to medical reports and statistics, skin diseases have millions of victims worldwide. These diseases might affect the health and life of patients and increase the costs of healthcare services. Delays in diagnosing such diseases make it difficult to overcome the consequences of these types of disease. Usually, diagnosis is performed using dermoscopic images, where specialists utilize certain measures to produce the results. This approach to diagnosis faces multiple disadvantages, such as overlapping infectious and inflammatory skin diseases and high levels of visual diversity, obstructing accurate diagnosis. Therefore, this article uses medical image analysis and artificial intelligence to present an automatic diagnosis system of different skin lesion categories using dermoscopic images. The addressed diseases are actinic keratoses (solar keratoses), benign keratosis (BKL), melanocytic nevi (NV), basal cell carcinoma (BCC), dermatofibroma (DF), melanoma (MEL), and vascular skin lesions (VASC). The proposed system consists of four main steps: (i) preprocessing the input raw image data and metadata; (ii) feature extraction using six pre-trained deep learning models (i.e., VGG19, InceptionV3, ResNet50, DenseNet201, and Xception); (iii) features concatenation; and (iv) classification/diagnosis using machine learning techniques. The evaluation results showed an average accuracy, sensitivity, specificity, precision, and disc similarity coefficient (DSC) of around 99.94%, 91.48%, 98.82%, 97.01%, and 94.00%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call