Abstract
We are developing a computer-aided detection system for bladder cancer on CTU. The bladder was automatically segmented with our Conjoint Level set Analysis and Segmentation System (CLASS). In this preliminary study, we developed a system for detecting mass within the contrast-enhanced (C) region of the bladder. The C region was delineated from the segmented bladders using a method based on maximum intensity projection. The bladder wall of the C region was extracted using thresholding to remove the contrast material. The wall on each slice was transformed into a wall profile. Morphology and voxel intensity along the profile were analyzed and suspicious locations were labeled as lesion candidates. The candidates were segmented and 20 morphological features were extracted from each candidate. A data set of 35 patients with 45 biopsy-proven bladder lesions within the C region was used for system evaluation. Stepwise feature selection with simplex optimization and leave-one-case-out method was used for training and validation. For each partition in the leave-one-case-out method, features were selected from the training cases and a linear discriminant (LDA) classifier was designed to merge the selected features into a single score for classification of the lesion candidates into bladder lesions and normal findings in the left-out case. A single score was generated for each lesion candidate. The performance of the CAD system was evaluated by FROC analysis. At an FP rate of 2.5 FPs/case, the system achieved a sensitivity of 82%, while at 1.7 FPs/case, a sensitivity of 71%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.