Abstract

Planar function generating mechanisms may be synthesized for a limited number of precision points by carrying out a kinematic inversion about the output link. However, this becomes quite difficult for spatial mechanisms. In this paper the general RSSR spatial function generating mechanism is synthesized using the Selective Precision Synthesis technique. In this computer-aided design method, nonlinear constraint equations relating the generated and desired rotations of the output crank are formulated. These constraints which define accuracy neighborhoods around each of the “n” prescribed output crank rotations are then solved using the Generalized Reduced Gradient Method of optimization. The mathematical formulation, the general procedure of synthesis, and numerical examples are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.