Abstract

AbstractBreast cancer can be effectively detected and diagnosed using the technology of digital mammography. However, although this technology has been rapidly developing recently, suspicious regions cannot be detected in some cases by radiologists, because of the noise or inappropriate mammogram contrast. This study presents a classification of segmented region of interests (ROIs) as either benign or malignant to serve as a second eye of the radiologists. Our study consists of three steps. In the first step, spherical wavelet transform (SWT) is applied to the original ROIs. In the second step, shape, boundary and grey level based features of wavelet (detail) and scaling (approximation) coefficients are extracted. Finally, in the third step, malignant/benign classification of the masses is implemented by giving the feature matrices to a support vector machine system. The proposed system achieves 91.4% and 90.1% classification accuracy using the dataset acquired from the hospital of Istanbul University in Turkey and the free Mammographic Image Analysis Society, respectively. Furthermore, discrete wavelet transform, which produces 83.3% classification accuracy, is applied to the coefficients to make a comparison with the SWT method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.