Abstract
This work presents an adaptation and validation of a method for automatic crop row detection from images captured in potato fields (Solanum tuberosum) for initial growth stages based on the micro-ROI concept. The crop row detection is a crucial aspect for autonomous guidance of agricultural vehicles and site-specific treatments application. The images were obtained using a color camera installed in the front of a tractor under perspective projection. There are some issues that can affect the quality of the images and the detection procedure, among them: uncontrolled illumination in outdoor agricultural environments, different plant densities, presence of weeds and gaps in the crop rows. The adapted approach was designed to address these adverse situations and it consists of three linked phases. The main contribution is the ability to detect straight and curved crop rows in potato crops. The performance was quantitatively compared against two existing methods, achieving acceptable results in terms of accuracy and processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.