Abstract

Recognition of construction waste compositions using computer vision (CV) is increasingly explored to enable its subsequent management, e.g., determining chargeable levy at disposal facilities or waste sorting using robot arms. However, the applicability of existing CV-enabled construction waste recognition in real-life scenarios is limited by their relatively low accuracy, characterized by a failure to distinguish boundaries among different waste materials. This paper aims to propose a novel boundary-aware Transformer (BAT) model for fine-grained composition recognition of construction waste mixtures. First, a pre-processing workflow is devised to separate the hard-to-recognize edges from the background. Second, a Transformer structure with a self-designed cascade decoder is developed to segment different waste materials from construction waste mixtures. Finally, a learning-enabled edge refinement scheme is used to fine-tune the ignored boundaries, further boosting the segmentation precision. The performance of the BAT model was evaluated on a benchmark dataset comprising nine types of materials in a cluttered and mixture state. It recorded a 5.48% improvement of MIoU (mean intersection over union) and 3.65% of MAcc (Mean Accuracy) against the baseline. The research contributes to the body of interdisciplinary knowledge by presenting a novel deep learning model for construction waste material semantic segmentation. It can also expedite the applications of CV in construction waste management to achieve a circular economy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.