Abstract

This paper presents an experiment with four different convolutional neural networks architectures that aim to classify segments of a sheep using a dataset of superpixels. The proposal used an image dataset with 512 images of 32 sheep. In this dataset of images, we applied the Simple Linear Iterative Clustering technique with a K number parameter of 600 to generate the dataset of superpixels that was later processed in the deep neural networks. We selected four architectures for training the models: VGG16, ResNet152V2, InceptionV3, and DenseNet201. The experiment was conducted using cross-validation with five-folds separating the dataset into training (60%), validation (20%), and testing (20%). The best result presented was from the approach with the DenseNet201 technique with an F-score of 0.928. When applying ANOVA, the P-value was 0.0000000000329 (3.29e-11***) between the tested architectures, which shows that the results are statistically significant. Therefore, DenseNet201 presented itself as a relevant architecture for this problem that aims to classify the superpixels referring to a sheep and the image's background, and the average IoU with post-processing for image segmentation with DenseNet201 obtained 0.8332. Thus, we can highlight the contributions of this research as a methodology to segment images of mixed-breed sheep of the Texel and Santa Inês breeds using convolutional neural networks and provide a non-invasive method that can support other implementations such as animal tracking and weight prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.